Skip to content
1882
Volume 64, Issue 1
  • ISSN: 0008-8994
  • E-ISSN: 1600-0498

Abstract

Abstract

Skeletons drawn from archaeological contexts provide a fund of data for assessing disease in general and timing of epidemics in particular in past societies. The bioarchaeological record presents an especially important perspective on timing of some of the world's most catastrophic diseases, such as leprosy, tuberculosis, plague (Black Death), and treponematosis. Application of new developments in paleogenomics and paleogenetics presents new opportunities to document ancient pathogens' DNA (for example, Black Death), track their history, and assess their beginning and end points. Paleopathological documentation of disease terminus is complex, in part owing to circumstances where past communities experienced overlapping epidemics, such as leprosy and plague. For most settings, these syndemics-whereby there is an interaction between two or more epidemic diseases-both exacerbate and enhance the burden of morbidity in a community or region. Fundamental to understanding the severity and duration of epidemics is the consideration of multiple factors that simultaneously influence the severity and duration of the specific infectious diseases in a community or region, including poor oral health, under-nutrition, iron deficiency anemia, and elevated parasite load. In our view, comprehending the beginning, the middle, and the end of epidemics requires understanding the wider context of syndemics, the multiple challenging circumstances that undermine health and community stability, and how biosocial factors differentially affect the immune competence of individuals. This article provides several examples of the application of bioarchaeology and syndemics theory in achieving an understanding of how epidemics end. Pathogens continue to circulate, even after what appears to be the end. In effect, then, there is no “end,” just evolution of opportunistic pathogens and our ability (or not) to mitigate them.

Open-access
Loading

Article metrics loading...

/content/journals/10.1484/J.CNT.5.130031
2022-06-01
2025-12-04

Metrics

Loading full text...

Full text loading...

/deliver/fulltext/cnt/64/1/J.CNT.5.130031.html?itemId=/content/journals/10.1484/J.CNT.5.130031&mimeType=html&fmt=ahah

References

  1. Appleby, A. B. (1980). The disappearance of plague: a continuing puzzle. The Economic History Review, 33, 161173. https://doi.org/ [Crossref]
    [Google Scholar]
  2. Boldsen, J. L. (2005). Leprosy and mortality in the medieval Danish village of Tirup. American Journal of Physical Anthropology, 126, 159168. https://doi.org/ [Crossref]
    [Google Scholar]
  3. Boldsen, J. L., Rasmussen, K. L., Riis, T., Dittmar, M., & Weise, S. (2013). Schleswig: Medieval leprosy on the boundary between Germany and Denmark. Anthropologischer Anzeiger, 70, 273287. https://doi.org/ [Crossref]
    [Google Scholar]
  4. Bos, K. I., Schuenemann, V. J., Golding, G. B., Burbano, H. A., Waglechner, N., Coombes, B. K., & Krause, J. (2011). A draft genome of Yersinia pestis from victims of the Black Death. Nature, 478, 506510. https://doi.org/ [Crossref]
    [Google Scholar]
  5. Brenner, E. (2010). Recent perspectives on leprosy in medieval eastern Europe. History Compass, 8, 388406. https://doi.org/ [Crossref]
    [Google Scholar]
  6. Buikstra, J. E. (2019). Ortner's identification of pathological conditions in human skeletal remains (3rd ed.). New York, NY: Elsevier. https://doi.org/ [Crossref]
  7. Buikstra, J. E., & Roberts, C. A. E. (2012). The global history of paleopathology: Pioneers and prospects. Oxford, UK: Oxford University Press. https://doi.org/ [Crossref]
  8. Butlin, C. R., & Lockwood, D. N. (2020). Why we should stop using the word leprosy. The Lancet Infectious Diseases, 20, 900901. https://doi.org/ [Crossref]
    [Google Scholar]
  9. Carmichael, A. G. (2014). Plague persistence in western Europe: A hypothesis. The Medieval Globe, 1, 157–191. Retrieved from https://scholarworks.wmich.edu/tmg/vol1/iss1/8/
  10. CDC . (2012, May 18). Lesson 1: Introduction to epidemiology. Section 11: Epidemic disease occurrence. CDC Web Archive. Retrieved from https://www.cdc.gov/csels/dsepd/ss1978/lesson1/section11.html
  11. Charters, E., & Heitman, K. (2021). How epidemics end. Centaurus, 63(1), 210224. https://doi.org/ [Crossref]
    [Google Scholar]
  12. Cipolla, C. M. (1981). Fighting the plague in seventeenth-century Italy. Madison, WI: University of Wisconsin Press.
  13. Cohen, M. N., & Armelagos, G. J. E. (2013). Paleopathology at the origins of agriculture. Gainesville, FL: University of Florida Press. (Original work published 1984)
  14. Crespo, F. (2020). Reconstructing immune competence in skeletal samples: A theoretical and methodological approach. In C. Cheverko, J. Prince-Buitenhuys, & M. Hubbe (Eds.), Theoretical approaches in bioarchaeology (pp. 76–92). London, UK: Routledge.
  15. Crespo, F. (in press). Leprosy in medieval Europe: An immunological and syndemic approach. In L. Jones & N. Varlik (Eds.), Death and disease in the medieval and early modern worlds. York, UK: York Medieval Press.
  16. Crespo, F., & Lawrenz, M. (2014). Heterogeneous immunological landscapes and medieval plague: an invitation to a new dialogue between historians and immunologists. The Medieval Globe, 1, 229–257. Retrieved from https://scholarworks.wmich.edu/tmg/vol1/iss1/10
  17. Crespo, F., White, J., & Roberts, C. A. (2019). Revisiting the tuberculosis and leprosy cross-immunity hypothesis: Expanding the dialogue between immunology and paleopathology. International Journal of Paleopathology, 26, 3747. https://doi.org/ [Crossref]
    [Google Scholar]
  18. Dematrie, L. (2007). Leprosy in pre-modern medicine: A malady of the whole body. Baltimore, MD: John Hopkins University Press.
  19. Deps, P., & Cruz, A. (2020). Why we should stop using the word leprosy. The Lancet Infectious Diseases, 20, 7578. https://doi.org/ [Crossref]
    [Google Scholar]
  20. DeWitte, S. N. (2014). Health in post-Black Death London (1350–1538): Age patterns of periosteal new bone formation in a post-epidemic population. American Journal of Physical Anthropology, 155, 260267. https://doi.org/ [Crossref]
    [Google Scholar]
  21. DeWitte, S. N. (2015). Setting the stage for medieval plague: Pre-Black Death trends in survival and mortality. American Journal of Physical Anthropology, 158, 441451. https://doi.org/ [Crossref]
    [Google Scholar]
  22. DeWitte, S. N. (2016). Archaeological evidence of epidemics can inform future epidemics. Annual Review of Anthropology, 45, 6377. https://doi.org/ [Crossref]
    [Google Scholar]
  23. DeWitte, S. N. (2018). Stress, sex, and plague: Patterns of developmental stress and survival in pre- and post-Black Death London. American Journal of Human Biology, 30, e20372. https://doi.org/ [Crossref]
    [Google Scholar]
  24. DeWitte , S. N., & Slavin, P. (2013). Between famine and death: England on the eve of the Black Death: Evidence from paleoepidemiology and manorial accounts. The Journal of Interdisciplinary History, 44, 37–60. https://doi.org/10.1162/JINH_a_00500
  25. Ell, S. R. (1984). Immunity as a factor in the epidemiology of medieval plague. Reviews of Infectious Diseases, 6, 866879. https://doi.org/ [Crossref]
    [Google Scholar]
  26. Giffin, K., Lankapalli, A. K., Sabin, S., Spyrou, M. A, Posth, C., Kozakaite, J., et al.Bos, K. I. (2020). A treponemal genome from an historic plague victim supports a recent emergence of yaws and its presence in 15th century Europe. Scientific Reports, 10, 9499. https://doi.org/ [Crossref]
    [Google Scholar]
  27. Green, M. H. (2014). Taking “pandemic” seriously: Making the Black Death global. The Medieval Globe, 1, 27–61. Retrieved from https://scholarworks.wmich.edu/tmg/vol1/iss1/4
  28. Green, M. H. (2020). The four Black Deaths. The American Historical Review, 125, 16011631. https://doi.org/ [Crossref]
    [Google Scholar]
  29. Guellil, M., Kersten, O., Namouchi, A., Luciani, S., Marota, I., Arcini, C. A., et al. & Bramanti, B. (2020). A genomic and historical synthesis of plague in 18th century Eurasia. Proceedings of the National Academy of Sciences, 117, 2832828335. https://doi.org/ [Crossref]
    [Google Scholar]
  30. Haller, M., Callan, K., Susat, J., Flux, A. L., Immel, A., Franke, A., et al. & Krause-Kyora, B. (2021). Mass burial genomics reveals outbreak of enteric paratyphoid fever in the late medieval trade city Lübeck. iScience, 24, 102419. https://doi.org/ [Crossref]
    [Google Scholar]
  31. Harper, K. N., Zuckerman, M. K., Harper, M. L., Kingston, J. D., & Armelagos, G. J. (2011). The origin and antiquity of syphilis revisited: An appraisal of Old World pre-Columbian evidence for treponemal infection. American Journal of Physical Anthropology, 146, 99133. https://doi.org/ [Crossref]
    [Google Scholar]
  32. Herrick, C. (2020). Syndemics of COVID-19 and pre-existing conditions. Somatosphere. Retrieved from http://somatosphere.net/2020/syndemics-of-covid-19-and-pre-existing-conditions.html/
  33. Horton, R. (2020). Offline: COVID-19 is not a pandemic. The Lancet, 396, 874. https://doi.org/ [Crossref]
    [Google Scholar]
  34. Immel, A., Key, F. M., Szolek, A., Barquera, R., Robinson, M. K., Harrison, G. F., et al.Krause, J. (2021) Analysis of genomic DNA from medieval plague victims suggests long-term effect of yersinia pestis on human immunity genes. Molecular Biology and Evolution, 38, 40594076. https://doi.org/ [Crossref]
    [Google Scholar]
  35. Klaus, H. D. (2014). Frontiers in the bioarchaeology of stress and disease: Cross-disciplinary perspectives from pathophysiology, human biology, and epidemiology. American Journal of Physical Anthropology, 155, 294308. https://doi.org/ [Crossref]
    [Google Scholar]
  36. Larsen, C. S. (1995). Biological changes in human populations with agriculture. Annual Review of Anthropology, 24, 185213. https://doi.org/ [Crossref]
    [Google Scholar]
  37. Larsen, C. S. (2000). Skeletons in our closet: Revealing our past through bioarchaeology. Princeton, NJ: Princeton University Press.
  38. Larsen, C. S. (2006). The agricultural revolution as environmental catastrophe: Implications for health and lifestyle in the Holocene. Quaternary International, 150, 1220. https://doi.org/ [Crossref]
    [Google Scholar]
  39. Larsen, C. S. (2014). Bioarchaeology. In C. Smith, S. Blau, D. H. Ubelaker, & L. Fondebrider (Eds.), Encyclopedia of global archaeology, section on bioarchaeology and human osteology (pp. 888–889). New York, NY: Springer.
  40. Larsen, C. S. (2015). Bioarchaeology: Interpreting behavior from the human skeleton (2nd ed.). Cambridge, UK: Cambridge University Press.
  41. Larsen, C. S. (2018). The bioarchaeology of health crisis: Infectious disease in the past. Annual Review of Anthropology, 47, 295313. https://doi.org/ [Crossref]
    [Google Scholar]
  42. Larsen, C. S., Knüsel, C. J., Haddow, S. D., Pilloud, M. A., Milella, M., Sadvari, J. W., et al. & Glencross, B. (2019). Bioarchaeology of Neolithic Çatalhöyük reveals fundamental transitions in health, mobility, and lifestyle in early farmers. Proceedings of the National Academy of Sciences, 116, 1261512623. https://doi.org/ [Crossref]
    [Google Scholar]
  43. Lynteris, C. (2014). Introduction: The time of epidemics. Cambridge Journal of Anthropology, 32, 2431. https://doi.org/ [Crossref]
    [Google Scholar]
  44. Magilton, J., Lee, F., & Boylston, A. E. (2008). Lepers outside the gate: Excavations at the cemetery of the hospital of St James and St Mary Magdalene, Chichester, 1986–1987 and 1993. York, UK: Council for British Archaeology.
  45. Manchester, K., & Roberts, C. (1989). The palaeopathology of leprosy in Britain: A review. World Archaeology, 21, 265272.
    [Google Scholar]
  46. McDade, T. W. (2005). The ecologies of human immune function. Annual Review of Anthropology, 34, 495521. https://doi.org/ [Crossref]
    [Google Scholar]
  47. McMahon, N. E. (2021). Understanding COVID-19 through the lens of “syndemic vulnerability”: Possibilities and challenges. International Journal of Health Promotion and Education, 59, 6769. https://doi.org/ [Crossref]
    [Google Scholar]
  48. Mendenhall, E. (2020). The COVID-19 syndemic is not global: Context matters. The Lancet, 396, 1731. https://doi.org/ [Crossref]
    [Google Scholar]
  49. Mendum, T. A., Schuenemann, V. J., Roffey, S., Taylor, G. M., Wu, H., Singh, P., et al.& Stewart, G. R. (2014). Mycobacterium leprae genomes from a British medieval leprosy hospital: Towards understanding an ancient epidemic. BMC Genomics, 15, 270. https://doi.org/ [Crossref]
    [Google Scholar]
  50. Modlin, R. L. (2010). The innate immune response in leprosy. Current Opinion Immunology, 22, 4854. https://doi.org/ [Crossref]
    [Google Scholar]
  51. Mordechai, L., Eisenberg, M., Newfiled, T. P., Izdebski, A., Kay, J. J., & Poinar, H. (2019). The Justinianic plague: An inconsequential pandemic? Proceedings of the National Academy of Sciences, 116, 2554625554. https://doi.org/ [Crossref]
    [Google Scholar]
  52. Pálfi, G., Ardagna, Y., Molnár, E., Dutour, O., Panuel, M., Haas, C. J., et al. & Nerlich, A. G. (1999). Coexistence of tuberculosis and ankylosing spondylitis in a 7–8th century specimen evidenced by molecular biology. In G. Y. Pálfi, O. Dutour, J. Deák, & I. Hutás (Eds.), Tuberculosis: Past and present (pp. 403–409). Budapest, Hungary: Golden Book Publisher.
  53. Pinhasi, R., & Stock, J. E. (Eds.). (2011). The bioarchaeology of the agricultural transition. London, UK: Wiley-Blackwell.
  54. Rafi, A., Spigelman, M., Stanford, J., Lemma, E., Donoghue, H., & Zias, J. (1994). DNA of Mycobacterium leprae detected by PCR in ancient bone. International Journal of Osteoarchaeology, 4, 287290. https://doi.org/ [Crossref]
    [Google Scholar]
  55. Rawcliffe, C. (2006). Leprosy in medieval England. Woodbridge, UK: Boydell Press.
  56. Resnick, D., & Niwayama, D. (1995). Osteomyelitis, septic arthritis, and soft tissue infection: Organisms. In D. Resnick (Ed.), Diagnosis of bone and joint disorders (3rd ed.; pp. 2448–2558). Edinburgh, UK: W. B. Saunders.
  57. Ridley, D. S., & Jopling, W. H. (1966). Classification of leprosy according to immunity: A five-group system. International Journal of Leprosy and Other Mycobacterial Diseases, 34, 255273.
    [Google Scholar]
  58. Roberts, C. A. (2019). Infectious disease: Introduction, periostosis, periostitis, osteomyelitis, and septic arthritis. In J. E. Buikstra (Ed.), Ortner's identification of pathological conditions in human skeletal remains (pp. 285–319). London, UK: Academic Press.
  59. Roberts, C. A. (2020). Leprosy: Past and present. Gainesville, FL: University of Florida Press.
  60. Roberts, C. A., & Buikstra, J. E. (2019). Bacterial infections. In J. E. Buikstra (Ed.), Ortner's identification of pathological conditions in human skeletal remains (pp. 321–439). London, UK: Academic Press.
  61. Roffey, S., & Tucker, K. (2012). A contextual study of the medieval hospital and cemetery of St Mary Magdalen, Winchester, England. International Journal of Paleopathology, 2, 170180. https://doi.org/ [Crossref]
    [Google Scholar]
  62. Salo, W. L., Aufderheide, A. C., Buikstra, J., & Holcomb, T. A. (1994). Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy. Proceedings of the National Academy of Sciences, 91, 20912094. https://doi.org/ [Crossref]
    [Google Scholar]
  63. Schuenemann, V. J., Avanzi, C., Krause-Kyora, B., Seitz, A., Herbig, A., Inskip, S., et al.& Krause, J. (2018). Ancient genomes reveal a high diversity of Mycobacterium leprae in medieval Europe. PLOS Pathogens, 14, e1006997. https://doi.org/ [Crossref]
    [Google Scholar]
  64. Schuenemann, V. J., Singh, P., Mendum, T. A., Krause-Kyora, B., Jäger, G., Bos, K. I., et al. & Krause, J. (2013). Genome-wide comparison of medieval and modern Mycobacterium leprae. Science, 341. https://doi.org/ [Crossref]
    [Google Scholar]
  65. Singer, M. (2009). Introduction to syndemics: A critical systems approach to public and community health.San Francisco, CA: John Wiley & Sons.
  66. Singer, M., Bulled, N., Ostrach, B., & Mendenhall, E. (2017). Syndemics and the biosocial conception of health. The Lancet, 389, 941950. https://doi.org/ [Crossref]
    [Google Scholar]
  67. Singer, M., & Clair, S. (2003). Syndemics and public health: Reconceptualizing disease in bio-social context. Medical Anthropology Quarterly, 17, 423441. https://doi.org/ [Crossref]
    [Google Scholar]
  68. Slack, P. (1981). The disappearance of plague: An alternative view. The Economic History Review, 34, 469476. https://doi.org/ [Crossref]
    [Google Scholar]
  69. Slavin, P. (2021). Out of the west: Formation of a permanent plague reservoir in south-central Germany (1349–1356) and its implications. Past and Present, 252, 351. https://doi.org/ [Crossref]
    [Google Scholar]
  70. Spigelman, M., & Lemma, E. (1993). The use of the polymerase chain reaction (PCR) to detect Mycobacterium tuberculosis in ancient skeletons. International Journal of Osteoarchaeology, 3, 137143. https://doi.org/ [Crossref]
    [Google Scholar]
  71. Spyrou, M. A., Keller, M., Tukhbatova, R. I., Scheib, C. L., Nelson, E. A., Andrades Valtueña, A., et al. & Krause, J. (2019). Phylogeography of the second plague pandemic revealed through analysis of historical Yersinia pestis genomes. Nature Communications, 10, 4470. https://doi.org/ [Crossref]
    [Google Scholar]
  72. Steckel, R. H., Larsen, C. S., Roberts, C. A., & Baten, J. E. (Eds.). (2019). The backbone of Europe: Health, diet, work and violence over two millennia. Cambridge, UK: Cambridge University Press.
  73. Steckel, R. H., & Rose, J. C. E. (Eds.). (2002). The backbone of history: Health and nutrition in the western hemisphere. New York, NY: Cambridge University Press.
  74. Stone, A., Lewis, C, & Schuenemann, V. (2020). Insights of heath and disease from ancient biomolecules. Philosophical Transactions of the Royal Society B, 375 (1812), 2019056820190568. http://doi.org/ [Crossref]
  75. Stone, A., & Ozga, A. (2019). Ancient DNA in the study of ancient disease. In J. E. Buikstra (Ed.), Ortner's identification of pathological conditions in human skeletal remains (pp. 183–210). London, UK: Academic Press. https://doi.org/ [Crossref]
  76. Susat, J., Bonczarowska, J. H., Pētersone-Gordina, E., Immel, A., Nebel, A., Gerhards, G., & Krause-Kyora, B. (2020). Yersinia pestis strains from Latvia show depletion of the pla virulence gene at the end of the Second Plague Pandemic. Scientific Reports, 10, 14628. https://doi.org/ [Crossref]
/content/journals/10.1484/J.CNT.5.130031
Loading
/content/journals/10.1484/J.CNT.5.130031
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field.
Please enter a valid email address.
Approval was a Success
Invalid data
An error occurred.
Approval was partially successful, following selected items could not be processed due to error:
Please enter a valid_number test
aHR0cHM6Ly93d3cuYnJlcG9sc29ubGluZS5uZXQv