Skip to content
1882
Volume 64, Issue 1
  • ISSN: 0008-8994
  • E-ISSN: 1600-0498

Abstract

Abstract

Quantitative assessments of when infectious disease outbreaks end are crucial, as resources targeted towards outbreak responses typically remain in place until outbreaks are declared over. Recent improvements and innovations in mathematical approaches for determining when outbreaks end provide public health authorities with more confidence when making end-of-outbreak declarations. Although quantitative analyses of outbreaks have a long history, more complex mathematical and statistical methodologies for analysing outbreak data were developed early in the 20th century and continue to be refined. Historically, such methodologies focused primarily on factors affecting the early and middle phases of an outbreak, with less attention given to determining how and when outbreaks end. This review discusses mathematical modelling methods from the last 20 years that have been developed for determining the ends of infectious disease outbreaks, and considers factors that affect the accuracy of such determinations. When disease surveillance systems provide timely and representative data to inform models, the timings of end-of-outbreak declarations can be fine-tuned to allow outbreaks to be declared over quickly and with a low risk of being incorrect. Premature declarations that outbreaks are over can undermine earlier achievements in disease control and may result in a resurgence of cases, but unnecessary delays in declaring outbreaks over can cause significant economic and social harm. Appropriate declarations that balance the benefits of relaxing control measures against the risk of a surge in cases allow public health resources to be conserved (and economic and social pressures to be reduced) while limiting the potential for additional transmission.

Open-access
Loading

Article metrics loading...

/content/journals/10.1484/J.CNT.5.130125
2022-06-01
2025-12-04

Metrics

Loading full text...

Full text loading...

/deliver/fulltext/cnt/64/1/J.CNT.5.130125.html?itemId=/content/journals/10.1484/J.CNT.5.130125&mimeType=html&fmt=ahah

References

  1. Adam, D. C., Wu, P., Wong, J. Y., Lau, E. H. Y., Tsang, T. K., Cauchemez, S., et al. & Cowling, B. J. (2020). Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong. Nature Medicine, 26, 17141719.
    [Google Scholar]
  2. Akhmetzhanov, A. R., Jung, S.-M., Cheng, H. Y., & Thompson, R. N. (2021). A hospital-related outbreak of SARS-CoV-2 associated with variant Epsilon (B.1.429) in Taiwan: Transmission potential and outbreak containment under intensified contact tracing, January–February 2021. International Journal of Infectious Diseases, 110, 1520.
    [Google Scholar]
  3. Ali, S. T., Wang, L., Lau, E. H. Y., Xu, X.-K., Du, Z., Wu, Y., et al. & Cowling, B. J. (2020). Serial interval of SARS-CoV-2 was shortened over time by nonpharmaceutical interventions. Science, 9004, eabc9004.
    [Google Scholar]
  4. Aliee, M., Rock, K. S., & Keeling, M. J. (2020). Estimating the distribution of time to extinction of infectious diseases in mean-field approaches. Journal of the Royal Society Interface, 17, 20200540.
    [Google Scholar]
  5. Allen, L. J. S., Bokil, V. A., Cunniffe, N. J., Hamelin, F. M., Hilker, F. M., & Jeger, M. J. (2019). Modelling vector transmission and epidemiology of co-infecting plant viruses. Viruses, 11, 125.
    [Google Scholar]
  6. Anderson, R. M., & May, R. M. (1991). Infectious diseases of humans: Dynamics and control. Oxford, UK: Oxford University Press.
    [Google Scholar]
  7. Andersson, H., & Britton, T. (2000). Stochastic epidemics in dynamic populations: Quasi-stationarity and extinction. Journal of Mathematical Biology, 41, 559580.
    [Google Scholar]
  8. Angulo, F. J., Finelli, L., & Swerdlow, D. L. (2021). Estimation of US SARS-CoV-2 infections, symptomatic infections, hospitalizations, and deaths using seroprevalence surveys. JAMA Network Open, 4, e2033706.
    [Google Scholar]
  9. Arita, I., Wickett, J., & Nakane, M. (2004). Eradication of infectious diseases: Its concept, then and now. Japanese Journal of Infectious Diseases, 57, 16.
    [Google Scholar]
  10. Barbour, A. D. (1975). The duration of the closed stochastic epidemic. Biometrika, 62, 477482.
    [Google Scholar]
  11. Bartlett, M. S. (1957). Measles periodicity and community size. Journal of the Royal Statistical Society, Series A (General), 120, 4870.
    [Google Scholar]
  12. Bolker, B. M., & Grenfell, B. T. (1995). Space, persistence and dynamics of measles epidemics. Philosophical Transactions of the Royal Society B: Biological Sciences, 348, 309320.
    [Google Scholar]
  13. Borremans, B., Faust, C., Manlove, K. R., Sokolow, S. H., & Lloyd-Smith, J. O. (2019). Cross-species pathogen spillover across ecosystem boundaries: Mechanisms and theory. Philosophical Transactions of the Royal Society B: Biological Sciences, 374, 20180344.
    [Google Scholar]
  14. Bourhis, Y., Gottwald, T. R., Lopez-Ruiz, F. J., Patarapuwadol, S., & van den Bosch, F. (2019). Sampling for disease absence: Deriving informed monitoring from epidemic traits. Journal of Theoretical Biology, 461, 816.
    [Google Scholar]
  15. Bourhis, Y., Gottwald, T. R., & van den Bosch, F. (2019). Translating surveillance data into incidence estimates. Philosophical Transactions of the Royal Society B: Biological Sciences, 374, 20180262.
    [Google Scholar]
  16. Brauer, F. (2008). Compartmental models in epidemiology. Lecture Notes in Mathematics, 1945, 1979.
    [Google Scholar]
  17. Britton, T., & Neal, P. (2010). The time to extinction for a stochastic SIS-household-epidemic model. Journal of Mathematical Biology, 61, 763779.
    [Google Scholar]
  18. Britton, T., & Traoré, A. (2017). A stochastic vector-borne epidemic model: Quasi-stationarity and extinction. Mathematical Biosciences, 289, 8995.
    [Google Scholar]
  19. Brookmeyer, R., & You, X. (2006). A hypothesis test for the end of a common source outbreak. Biometrics, 62, 6165.
    [Google Scholar]
  20. Cameron, A. R., & Baldock, F. C. (1998a). A new probability formula for surveys to substantiate freedom from disease. Preventive Veterinary Medicine, 34, 117.
    [Google Scholar]
  21. Cameron, A. R., & Baldock, F. C. (1998b). Two-stage sampling in surveys to substantiate freedom from disease. Preventive Veterinary Medicine, 34, 1930.
    [Google Scholar]
  22. Cannon, R. M. (2001). Sense and sensitivity: Designing surveys based on an imperfect test. Preventive Veterinary Medicine, 49, 141163.
    [Google Scholar]
  23. Caporale, V., Giovannini, A., & Zepeda, C. (2012). Surveillance strategies for foot and mouth disease to prove absence of disease and absence of viral circulation. OIE Revue Scientifique et Technique, 31, 747759.
    [Google Scholar]
  24. Charters, E., & Heitman, K. (2021). How epidemics end. Centaurus, 63(1), 210224.
    [Google Scholar]
  25. Chowell, G. (2017). Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty, identifiability, and forecasts. Infectious Disease Modelling, 2, 379398.
    [Google Scholar]
  26. Chowell, G., Nishiura, H., & Bettencourt, L. M. A. (2007). Comparative estimation of the reproduction number for pandemic influenza from daily case notification data. Journal of the Royal Society Interface, 4, 154166.
    [Google Scholar]
  27. Cori, A., Donnelly, C. A., Dorigatti, I., Ferguson, N. M., Fraser, C., Garske, T., et al.Blake, I. M. (2017). Key data for outbreak evaluation: Building on the Ebola experience. Philosophical Transactions of the Royal Society B: Biological Sciences, 372. https://doi.org/ [Crossref]
    [Google Scholar]
  28. Cori, A., Ferguson, N. M., Fraser, C., & Cauchemez, S. (2013). A new framework and software to estimate time-varying reproduction numbers during epidemics. American Journal of Epidemiology, 178, 15051512.
    [Google Scholar]
  29. Coulombier, D., & Takkinen, J. (2013). From national to international: Challenges in cross-border multi-country, multi-vehicle foodborne outbreak investigations. Eurosurveillance, 18, 12.
    [Google Scholar]
  30. Dalziel, B. D., Kissler, S., Gog, J. R., Viboud, C., Bjørnstad, O. N., Metcalf, C. J. E., & Grenfell, B. T. (2018). Urbanization and humidity shape the intensity of influenza epidemics in U.S. cities. Science, 79, 7579.
    [Google Scholar]
  31. Davies, N. G., Klepac, P., Liu, Y., Prem, K., Jit, M., Pearson, C. A. B., et al.Eggo, R. M. (2020). Age-dependent effects in the transmission and control of COVID-19 epidemics. Nature Medicine, 26, 12051211.
    [Google Scholar]
  32. Davies, N. G., Kucharski, A. J., Eggo, R. M., Gimma, A., Edmunds, W. J., Jombart, T., et al.Liu, Y. (2020). Effects of non-pharmaceutical interventions on COVID-19 cases, deaths, and demand for hospital services in the UK: A modelling study. The Lancet Public Health, 5, e375e385.
    [Google Scholar]
  33. Deen, G. F., Broutet, N., Xu, W., Knust, B., Sesay, F. R., McDonald, S. L. R., et al.Sahr, F. (2017). Ebola RNA persistence in semen of Ebola virus disease survivors—Final report. New England Journal of Medicine, 377, 14281437.
    [Google Scholar]
  34. Diallo, B., Sissoko, D., Loman, N. J., Bah, H. A., Bah, H., Worrell, M. C., et al.Duraffour, S. (2016). Resurgence of Ebola virus disease in Guinea linked to a survivor with virus persistence in seminal fluid for more than 500 days. Clinical Infectious Diseases, 63, 13531356.
    [Google Scholar]
  35. Djaafara, B. A., Imai, N., Hamblion, E., Impouma, B., Donnelly, C. A., & Cori, A. (2021). A quantitative framework for defining the end of an infectious disease outbreak: Application to Ebola virus disease. American Journal of Epidemiology, 190, 642651.
    [Google Scholar]
  36. Doering, C. R., Sargsyan, K. V., & Sander, L. M. (2005). Extinction times for birth-death processes: Exact results, continuum asymptotics, and the failure of the Fokker-Planck approximation. Multiscale Modeling and Simulation, 3, 283299.
    [Google Scholar]
  37. Dowdle, W. R. (1998). The principles of disease elimination and eradication. Bulletin of the World Health Organization, 76, 2225.
    [Google Scholar]
  38. Ebata, A., Nisbett, N., & Gillespie, S. (2021). Food systems after Covid-19. IDS Bulletin, 52, 7393.
    [Google Scholar]
  39. Eggo, R. M., Watson, C. H., Camacho, A., Kucharski, A. J., Funk, S., & Edmunds, W. J. (2015). Duration of Ebola virus RNA persistence in semen of survivors: Population-level estimates and projections. Eurosurveillance, 20, 16.
    [Google Scholar]
  40. Eichner, M., & Dietz, K. (1996). Eradication of poliomyelitis: When can one be sure that poliovirus transmission has been terminated? American Journal of Epidemiology, 143, 816822.
    [Google Scholar]
  41. Foddai, A., Lubroth, J., & Ellis-Iversen, J. (2020). Base protocol for real time active random surveillance of coronavirus disease (COVID-19): Adapting veterinary methodology to public health. One Health, 9, 100129.
    [Google Scholar]
  42. Food and Agriculture Organization . (2017). Requirements for the establishment of pest free areas. Retrieved from https://assets.ippc.int/static/media/files/publication/en/2017/05/ISPM_04_1995_En_2017-05-2023_PostCPM12_InkAm.pdf
  43. Furuse, Y., Sando, E., Tsuchiya, N., Miyahara, R., Yasuda, I., Ko, Y. K., et al. & Oshitani, H. (2020). Clusters of coronavirus disease in communities, Japan, January–April 2020. Emerging Infectious Diseases, 26, 21762179.
    [Google Scholar]
  44. Gibbons, C. L., Mangen, M.-J. J., Plass, D., Havelaar, A. H., Brooke, R. J., Kramarz, P., et al.Kretzschmar, M. E. E. (2014). Measuring underreporting and under-ascertainment in infectious disease datasets: a comparison of methods. BMC Public Health, 14, 117.
    [Google Scholar]
  45. Gignoux, E., Idowu, R., Bawo, L., Hurum, L., Sprecher, A., Bastard, M., & Porten, K. (2015). Use of capture-recapture to estimate underreporting of Ebola Virus disease, Montserrado County, Liberia. Emerging Infectious Diseases, 21, 22652267.
    [Google Scholar]
  46. Giles Leigh, E. (1981). The average lifetime of a population in a varying environment. Journal of Theoretical Biology, 90, 213239.
    [Google Scholar]
  47. Hanley, J. A., & Lippman-Hand, A. (2008). If nothing goes wrong, is everything all right? Journal of Cardiothoracic and Vascular Anesthesia, 22, 653654.
    [Google Scholar]
  48. Hart, W. S., Abbott, S., Endo, A., Miller, E., Andrews, N., Maini, P. K., Funk, S., & Thompson, R. N. (2022). Inference of the SARS-CoV-2 generation time using UK household data. eLife, 11, e70767. https://doi.org/ [Crossref]
    [Google Scholar]
  49. Hart, W. S., Maini, P. K., Yates, C. A., & Thompson, R. N. (2020). A theoretical framework for transitioning from patient-level to population-scale epidemiological dynamics: Influenza A as a case study. Journal of the Royal Society Interface, 17, 20200230.
    [Google Scholar]
  50. Hart, W. S., Miller, E., Andrews, N. J., Waight, P., Maini, P. K., Funk, S., & Thompson, R. N. (2022). Generation time of the alpha and delta SARS-CoV-2 variants: an epidemiological analysis. Lancet Infectious Diseases. https://doi.org/ [Crossref]
    [Google Scholar]
  51. Hazra, A. (2017). Using the confidence interval confidently. Journal of Thoracic Disease, 9, 41254130.
    [Google Scholar]
  52. Hersey, S., Martel, L. D., Jambai, A., Keita, S., Meyer, E., Seeman, S., et al.Arnold, K. E. (2015). Ebola virus disease—Sierra Leone and Guinea, August 2015. Morbidity and Mortality Weekly Report, 64, 981984.
    [Google Scholar]
  53. Heymann, D. L. (2006). Control, elimination, eradication and re-emergence of infectious diseases: Getting the message right. Bulletin of the World Health Organization, 84, 8283.
    [Google Scholar]
  54. Holme, P. (2013). Extinction times of epidemic outbreaks in networks. PLoS ONE, 8, e84429. https://doi.org/ [Crossref]
    [Google Scholar]
  55. Johnson, W. O., Su, C. L., Gardner, I. A., & Christensen, R. (2004). Sample size calculations for surveys to substantiate freedom of populations from infectious agents. Biometrics, 60, 165171.
    [Google Scholar]
  56. Jovanovic, B. D., & Levy, P. S. (1997). A look at the rule of three. American Statistician, 51, 137139.
    [Google Scholar]
  57. Keeling, M. J., & Grenfell, B. T. (1997). Disease extinction and community size: Modeling the persistence of measles. Science, 275, 6567.
    [Google Scholar]
  58. Keeling, M. J., & Grenfell, B. T. (2002). Understanding the persistence of measles: Reconciling theory, simulation and observation. Proceedings of the Royal Society B: Biological Sciences, 269, 335343.
    [Google Scholar]
  59. Keeling, M. J., & Rohani, P. (2008). Modeling infectious diseases in humans and animals. Princeton, NJ: Princeton University Press.
  60. Keeling, M. J., & Ross, J. V. (2008). On methods for studying stochastic disease dynamics. Journal of the Royal Society Interface, 5, 171181.
    [Google Scholar]
  61. Keita, M., Duraffour, S., Loman, N. J., Rambaut, A., Diallo, B., Magassouba, N., et al.Faye, O. (2016). Unusual ebola virus chain of transmission, Conakry, Guinea, 2014–2015. Emerging Infectious Diseases, 22, 21492152.
    [Google Scholar]
  62. Kenah, E., Lipsitch, M., & Robins, J. M. (2008). Generation interval contraction and epidemic data analysis. Mathematical Biosciences, 213, 7179.
    [Google Scholar]
  63. Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 115, 700721.
    [Google Scholar]
  64. Korenberg, E. I. (2000). Seasonal population dynamics of Ixodes ticks and tick-borne encephalitis virus. Experimental and Applied Acarology, 24, 665681.
    [Google Scholar]
  65. Kucharski, A. J., Funk, S., Eggo, R. M., Mallet, H. P., Edmunds, W. J., & Nilles, E. J. (2016). Transmission dynamics of Zika virus in island populations: A modelling analysis of the 2013–14 French Polynesia outbreak. PLoS Neglected Tropical Diseases, 10, 115.
    [Google Scholar]
  66. Larsen, D. A., Collins, M. B., Du, Q., Hill, D., Insaf, T. Z., Kilaru, P., et al. & Green, H. (2021). Coupling freedom from disease principles and early warning from wastewater surveillance to improve health security. MedRxiv, 2021.06.11.21258797.
    [Google Scholar]
  67. Lee, H., & Nishiura, H. (2017). Recrudescence of Ebola virus disease outbreak in West Africa, 2014–2016. International Journal of Infectious Diseases, 64, 9092.
    [Google Scholar]
  68. Lee, H., & Nishiura, H. (2019). Sexual transmission and the probability of an end of the Ebola virus disease epidemic. Journal of Theoretical Biology, 471, 112.
    [Google Scholar]
  69. Lindholm, M., & Britton, T. (2007). Endemic persistence or disease extinction: The effect of separation into sub-communities. Theoretical Population Biology, 72, 253263.
    [Google Scholar]
  70. Linton, N. M., Akhmetzhanov, A. R., & Nishiura, H. (2021a). Correlation between times to SARS-CoV-2 symptom onset and secondary transmission undermines epidemic control efforts. MedRxiv, 21262512.
    [Google Scholar]
  71. Linton, N. M., Akhmetzhanov, A. R., & Nishiura, H. (2021b). Localized end-of-outbreak determination for coronavirus disease 2019 (COVID-19): Examples from clusters in Japan. International Journal of Infectious Diseases, 105, 286292.
    [Google Scholar]
  72. Lipsitch, M., Cohen, T., Cooper, B., Robins, J. M., Ma, S., James, L., et al. & Murray, M. (2003). Transmission dynamics and control of severe acute respiratory syndrome. Science, 300, 19661970.
    [Google Scholar]
  73. Lloyd-Smith, J. O., George, D., Pepin, K. M., Pitzer, V. E., Pulliam, J. R. C., Dobson, A. P., et al. & Grenfell, B. T. (2009). Epidemic dynamics at the human-animal interface. Science, 326, 13621368.
    [Google Scholar]
  74. Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E., & Getz, W. M. (2005). Superspreading and the effect of individual variation on disease emergence. Nature, 438, 355359.
    [Google Scholar]
  75. Lo Iacono, G., Cunningham, A. A., Fichet-Calvet, E., Garry, F., Grant, D. S., Leach, M., et al.Aa, C. (2016). A unified framework for the infection dynamics of zoonotic spillover and spread. PLoS Neglected Tropical Diseases, 10, e0004957.
    [Google Scholar]
  76. Louis, T. A. (1981). Confidence intervals for a binomial parameter after observing no successes. American Statistician, 35, 154.
    [Google Scholar]
  77. MacArthur, R. H., & Wilson, E. O. (1967). The theory of island biogeography. Princeton, NJ: Princeton University Press.
  78. MacDermott, N. E., & Bausch, D. G. (2016). Virus persistence and recrudescence after Ebola virus disease: What are the risks to healthcare workers? Journal of Hospital Infection, 94, 113115.
    [Google Scholar]
  79. Mangel, M., & Tier, C. (1993). A simple direct method for finding persistence times of populations and application to conservation problems. Proceedings of the National Academy of Sciences, 90, 10831086.
    [Google Scholar]
  80. Michael, E., Smith, M. E., Katabarwa, M. N., Byamukama, E., Grisworld, E., Habomugisha, P., et al. & Richards, F. O. (2018). Substantiating freedom from parasitic infection by combining transmission model predictions with disease surveys. Nature Communications, 9, 4342.
    [Google Scholar]
  81. Mideo, N., Alizon, S., & Day, T. (2008). Linking within- and between-host dynamics in the evolutionary epidemiology of infectious diseases. Trends in Ecology and Evolution, 23, 511517.
    [Google Scholar]
  82. More, S. J., Cameron, A. R., Greiner, M., Clifton-Hadley, R. S., Rodeia, S. C., Bakker, D., et al. & Wierup, M. (2009). Defining output-based standards to achieve and maintain tuberculosis freedom in farmed deer, with reference to member states of the European Union. Preventive Veterinary Medicine,90(3–4), 254267.
    [Google Scholar]
  83. Nåsell, I. (1999). On the time to extinction in recurrent epidemics. Journal of the Royal Statistical Society Series B: Statistical Methodology, 61, 309330.
    [Google Scholar]
  84. Nishiura, H., & Chowell, G. (2009). The effective reproduction number as a prelude to statistical estimation of time-dependent epidemic trends. In G. Chowell, J. M. Hyman, L. M. A. Bettencourt, & C. Castillo-Chávez (Eds.), Mathematical and statistical estimation approaches in epidemiology (pp. 103–121). Dordrecht, The Netherlands: Springer. https://doi.org/10.1007/978-90-481-2313-1
  85. Nishiura, H., Miyamatsu, Y., & Mizumoto, K. (2016). Objective determination of end of MERS outbreak, South Korea, 2015. Emerging Infectious Diseases, 22, 146148.
    [Google Scholar]
  86. Parag, K. V. (2021). Sub-spreading events limit the reliable elimination of heterogeneous epidemics. Journal of the Royal Society Interface, 18, 20210444.
    [Google Scholar]
  87. Parag, K. V., Cowling, B. J., & Donnelly, C. A. (2021). Deciphering early-warning signals of the elimination and resurgence potential of SARS-CoV-2 from limited data at multiple scales. MedRxiv, 2020.11.23.20236968.
    [Google Scholar]
  88. Parag, K. V., Donnelly, C. A., Jha, R., & Thompson, R. N. (2020). An exact method for quantifying the reliability of end-of-epidemic declarations in real time. PLoS Computational Biology, 16, e1008478.
    [Google Scholar]
  89. Plowright, R. K., Parrish, C. R., McCallum, H., Hudson, P. J., Ko, A. I., Graham, A. L., & Lloyd-Smith, J. O. (2017). Pathways to zoonotic spillover. Nature Reviews Microbiology, 15, 502510.
    [Google Scholar]
  90. Ponce, L., Kinoshita, R., & Nishiura, H. (2019). Exploring the human-animal interface of Ebola virus disease outbreaks. Mathematical Biosciences and Engineering, 16, 31303143.
    [Google Scholar]
  91. Prem, K., Liu, Y., Russell, T. W., Kucharski, A. J., Eggo, R. M., Davies, N., et al.Hellewell, J. (2020). The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: A modelling study. The Lancet Public Health, 2667, 110.
    [Google Scholar]
  92. Rüegg, S. R., Welby, S., Yassin, H., Van der Stede, Y., Nafzger, R., Saatkamp, H., et al.Stärk, K. D. C. (2018). Optimising cost-effectiveness of freedom from disease surveillance—Bluetongue Virus Serotype 8 as an example. Preventive Veterinary Medicine, 160, 145154.
    [Google Scholar]
  93. Sachak-Patwa, R., Byrne, H. M., Dyson, L., & Thompson, R. N. (2021). The risk of SARS-CoV-2 outbreaks in low prevalence settings following the removal of travel restrictions. Communications Medicine, 1, 19.
    [Google Scholar]
  94. Sonaiya, E. B. (2007). Family poultry, food security and the impact of HPAI. World's Poultry Science Journal, 63, 132138.
    [Google Scholar]
  95. Soper, F. L. (1962). Problems to be solved if the eradication of tuberculosis is to be realized. American Journal of Public Health, 52, 734745.
    [Google Scholar]
  96. Swinton, J. (1998). Extinction times and phase transitions for spatially structured closed epidemics. Bulletin of Mathematical Biology, 60, 215230.
    [Google Scholar]
  97. Tariq, A., Lee, Y., Roosa, K., Blumberg, S., Yan, P., Ma, S., & Chowell, G. (2020). Real-time monitoring the transmission potential of COVID-19 in Singapore, March 2020. BMC Medicine, 18, 166.
    [Google Scholar]
  98. Teunis, P. F. M., Le Guyader, F. S., Liu, P., Ollivier, J., & Moe, C. L. (2020). Noroviruses are highly infectious but there is strong variation in host susceptibility and virus pathogenicity. Epidemics, 32, 100401.
    [Google Scholar]
  99. Thiermann, A. (2004). Emerging diseases and implications for global trade. Revue Scientifique et Technique (International Office of Epizootics),23, 701707.
    [Google Scholar]
  100. Thompson, C. N., Lee, C. T., Immerwahr, S., Resnick, S., Culp, G., & Greene, S. K. (2018). Sampling considerations for a potential Zika virus urosurvey in New York City. Epidemiology and Infection, 146, 16281634.
    [Google Scholar]
  101. Thompson, K. M., & Kalkowska, D. A. (2020). Review of poliovirus modeling performed from 2000 to 2019 to support global polio eradication polio eradication. Expert Review of Vaccines, 19, 661686.
    [Google Scholar]
  102. Thompson, K. M., & Kalkowska, D. A. (2021). Reflections on modeling poliovirus transmission and the polio eradication endgame. Risk Analysis, 41, 229247.
    [Google Scholar]
  103. Thompson, R. N. (2020). Novel coronavirus outbreak in Wuhan, China, 2020: Intense surveillance is vital for preventing sustained transmission in new locations. Journal of Clinical Medicine, 9, 498.
    [Google Scholar]
  104. Thompson, R. N. (2020). Epidemiological models are important tools for guiding COVID-19 interventions. BMC Medicine, 18, 1013.
    [Google Scholar]
  105. Thompson, R. N., & Brooks-Pollock, E. (2019). Detection, forecasting and control of infectious disease epidemics: modelling outbreaks in humans, animals and plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 374, 20190038.
    [Google Scholar]
  106. Thompson, R. N., Gilligan, C. A., & Cunniffe, N. J. (2016). Detecting presymptomatic infection is necessary to forecast major epidemics in the earliest stages of infectious disease outbreaks. PLoS Computational Biology, 12, 118.
    [Google Scholar]
  107. Thompson, R. N., Gilligan, C. A., & Cunniffe, N. J. (2020). Will an outbreak exceed available resources for control? Estimating the risk from invading pathogens using practical definitions of a severe epidemic. Journal of the Royal Society Interface, 17, 20200690.
    [Google Scholar]
  108. Thompson, R. N., Morgan, O. W., & Jalava, K. (2019). Rigorous surveillance is necessary for high confidence in end-of-outbreak declarations for Ebola and other infectious diseases. Philosophical Transactions of the Royal Society B: Biological Sciences, 374, 20180431.
    [Google Scholar]
  109. Thompson, R. N., Stockwin, J. E., van Gaalen, R. D., Polonsky, J. A., Kamvar, Z. N., Demarsh, P. A., et al. & Cori, A. (2019). Improved inference of time-varying reproduction numbers during infectious disease outbreaks. Epidemics, 29, 100356.
    [Google Scholar]
  110. Thompson, R. N., Thompson, C., Pelerman, O., Gupta, S., & Obolski, U. (2018). Increased frequency of travel may act to decrease the chance of a global pandemic. Philosophical Transactions of the Royal Society B: Biological Sciences, 374, 404871.
    [Google Scholar]
  111. Tratalos, J. A., Barrett, D. J., Clegg, T. A., O'Neill, R. G., McGrath, G., Lane, E. A., & More, S. J. (2018). Sampling methodology to maximize the efficient use of National Abattoir Surveillance: Using archived sera to substantiate freedom from bluetongue virus infection in Ireland. Frontiers in Veterinary Science, 5, 19.
    [Google Scholar]
  112. Weah, V. D., Doedeh, J. S., Wiah, S. Q., Nyema, E., Lombeh, S., & Naiene, J. (2017). Enhancing Ebola virus disease surveillance and prevention in counties without confirmed cases in rural Liberia: Experiences from Sinoe County during the flare-up in Monrovia, April to June, 2016. PLoS Currents, 9, 18.
    [Google Scholar]
  113. Wilkinson, K., Grant, W. P., Green, L. E., Hunter, S., Jeger, M. J., Lowe, P., et al.Waage, J. (2011). Infectious diseases of animals and plants: An interdisciplinary approach. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 19331942.
    [Google Scholar]
  114. Wilson, M. E. (2005). Travel and the emergence of infectious diseases. Journal of Agromedicine, 9, 159177.
    [Google Scholar]
  115. Woolhouse, M. E. J., Dye, C., Etard, J. F., Smith, T., Charlwood, J. D., Garnett, G. P., et al.Anderson, R. M. (1997). Heterogeneities in the transmission of infectious agents. Proceedings of the National Academy of Sciences, 94, 338342.
    [Google Scholar]
  116. World Health Organization . (2016). Generic framework for control, elimination and eradication of neglected tropical diseases. World Health Organization. Retrieved from https://apps.who.int/iris/handle/10665/205080
  117. Zhao, P., Zhang, N., & Li, Y. (2020). A comparison of infection venues of COVID-19 case clusters in northeast China. International Journal of Environmental Research and Public Health, 17, 114.
    [Google Scholar]
/content/journals/10.1484/J.CNT.5.130125
Loading
/content/journals/10.1484/J.CNT.5.130125
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field.
Please enter a valid email address.
Approval was a Success
Invalid data
An error occurred.
Approval was partially successful, following selected items could not be processed due to error:
Please enter a valid_number test
aHR0cHM6Ly93d3cuYnJlcG9sc29ubGluZS5uZXQv