Skip to content
1882
Volume 64, Issue 1
  • ISSN: 0008-8994
  • E-ISSN: 1600-0498

Abstract

Abstract

At the Centre for Ecological and Evolutionary Synthesis (CEES, University of Oslo), a group of biologists has been working for decades to disentangle the complex mechanisms of plague epizootics and epidemics in places where extant wild rodent reservoirs are present. These questions have been approached through ecological and climatic studies, mathematic modeling, as well as genomics and epidemiology. In 2013-2018, the Centre hosted the ERC-project MedPlag, which explored past pandemics through the lenses of additional disciplines, like archaeogenomics (ancient DNA), anthropology, archaeology, and evolution, always against the background of historical information. Here, we reflect on the end of plague in Europe based on the most recent studies on plague carried out in these different disciplines.

Open-access
Loading

Article metrics loading...

/content/journals/10.1484/J.CNT.5.130126
2022-06-01
2025-12-06

Metrics

Loading full text...

Full text loading...

/deliver/fulltext/cnt/64/1/J.CNT.5.130126.html?itemId=/content/journals/10.1484/J.CNT.5.130126&mimeType=html&fmt=ahah

References

  1. Achtman, M. (2012). Insights from genomic comparisons of genetically monomorphic bacterial pathogens. Philosophical Transactions of the Royal Society of London, Series B, 367(1590), 860867. https://doi.org/ [Crossref]
    [Google Scholar]
  2. Appleby, A. B. (1980). The disappearance of plague: A continuing puzzle. The Economic History Review, 33(2), 161173.
    [Google Scholar]
  3. Barbieri, R., Drancourt, M., & Raoult, D. (2020). The role of louse-transmitted diseases in historical plague pandemics. The Lancet Infectious Diseases, 21(2), e17–e25.
    [Google Scholar]
  4. Ben Ari, T., Neerinckx, S., Gage, K. L., Kreppel, K., Laudisoit, A., Leirs, H. & Stenseth, N. C. (2011). Plague and climate: Scales matter. PLoS Pathogens, 7(9), e1002160.
  5. Bos, K. I., Herbig, A., Sahl, J., Waglechner, N., Fourment, M., Forrest, S. A. et al. … & Poinar, H. N. (2016). Eighteenth century Yersinia pestis genomes reveal the long-term persistence of an historical plague focus. ELife, 5, e12994. https://doi.org/ [Crossref]
  6. Bos, K. I., Schuenemann, V. J., Golding, G. B., Burbano, H. A., Waglechner, N., Coombes, B. K. et al. … & Krause, J. (2011). A draft genome of Yersinia pestis from victims of the Black Death. Nature, 478(7370), 506510. https://doi.org/ [Crossref]
    [Google Scholar]
  7. Bramanti, B., Dean, K. R., Walløe, L., & Stenseth, N. C. (2019). The Third Plague Pandemic in Europe. Proceedings of the Royal Society B, 286(1901), 20182429. https://doi.org/ [Crossref]
  8. Bramanti, B., Wu, Y., Yang, R., Cui, Y., & Stenseth, N. C. (2021). Assessing the origins of the European plagues following the Black Death: A synthesis of genomic, historical, and ecological information. Proceedings of the National Academy of Sciences, 118(36), e2101940118. https://doi.org/ [Crossref]
  9. Carducci, A. (2001). L'ultima peste in Europa: Taranto 1945. In M. L. Distante & A. E. Portulano-Scoditti (Eds.), Atti del XLI Congresso Nazionale della Società Italiana di Storia della Medicina (pp. 163–176). Mesagne, Italy: Giordano Editore.
  10. Carmichael, A. G. (2014). Plague persistence in western Europe: A hypothesis. The Medieval Globe, 1(1), 8.
    [Google Scholar]
  11. Cohn, S. (2002). The Black Death transformed: Disease and culture in early Renaissance Europe. London, UK: Arnold.
  12. Colvin, T. (1907). Is bubonic plague still lurking in the city of Glasgow? The Lancet, 170(4396), 15221523.
    [Google Scholar]
  13. Dean, K. R. , Krauer, F., & Schmid, B. V. (2019). Epidemiology of a bubonic plague outbreak in Glasgow, Scotland in 1900. Royal Society Open Science, 6(1), 181695.
    [Google Scholar]
  14. Dean, K. R., Krauer, F., Walløe, L., Lingjærde, O. C., Bramanti, B., Stenseth, N. C., & Schmid, B. V. (2018). Human ectoparasites and the spread of plague in Europe during the Second Pandemic. Proceedings of the National Academy of Sciences of the United States of America, 115(6). https://doi.org/ [Crossref]
    [Google Scholar]
  15. Echenberg, M. (2010). Plague ports: The global urban impact of bubonic plague, 1894–1901. New York, NY: NYU Press.
  16. Eckert, E. A. (2000). The retreat of plague from central Europe, 1640–1720: A geomedical approach. Bulletin of the History of Medicine, 74(1), 128.
    [Google Scholar]
  17. Feldman, M., Harbeck, M., Keller, M., Spyrou, M. A., Rott, A., Trautmann, B. et al. & Krause, J. (2016). A high-coverage Yersinia pestis genome from a sixth-century Justinianic plague victim. Molecular Biology and Evolution, 33(11), 29112923. https://doi.org/ [Crossref]
    [Google Scholar]
  18. Guellil, M., Kersten, O., Namouchi, A., Luciani, S., Marota, I., Arcini, C. A., et al.Bakanidze, L. … & Bramanti, B. (2020). A genomic and historical synthesis of plague in 18th century Eurasia. Proceedings of the National Academy of Sciences, 177(45), 28328–28335. https://doi.org/10.1073/pnas.2009677117
  19. Haensch, S., Bianucci, R., Signoli, M., Rajerison, M., Schultz, M., Kacki, S. et al. … & Bramanti, B. (2010). Distinct clones of Yersinia pestis caused the Black Death. PLoS Pathogens, 6(10). https://doi.org/ [Crossref]
    [Google Scholar]
  20. Harbeck, M., Seifert, L., Hänsch, S., Wagner, D. M., Birdsell, D., Parise, K. L. et al. … & Scholz, H. C. (2013). Yersinia pestis DNA from skeletal remains from the 6th Century AD reveals insights into Justinianic plague. PLoS Pathogens, 9(5). https://doi.org/ [Crossref]
    [Google Scholar]
  21. Immel, A., Key, F. M., Szolek, A., Barquera, R., Robinson, M. K., Harrison, G. F. et al. … & Krause, J. (2021). Analysis of genomic DNA from medieval plague victims suggests long-term effect of Yersinia pestis on human immunity genes. Molecular Biology and Evolution, 38(10), 40594076. https://doi.org/ [Crossref]
    [Google Scholar]
  22. Keller, M., Spyrou, M. A., Scheib, C. L., Neumann, G. U., Kröpelin, A., Haas-Gebhard, B. et al. … & Krause, J. (2019). Ancient Yersinia pestis genomes from across Western Europe reveal early diversification during the First Pandemic (541–750). Proceedings of the National Academy of Sciences, 116(25), 1236312372.
    [Google Scholar]
  23. Konstantinidou, K., Mantadakis, E., Falagas, M. E., Sardi, T., & Samonis, G. (2009). Venetian rule and control of plague epidemics on the Ionian Islands during 17th and 18th centuries. Emerging Infectious Diseases, 15(1), 39.
    [Google Scholar]
  24. Moll, A. A., & O'Leary, S. (1942). Plague in the Americas: The West Indies and certain European-African islands. Boletín de la Oficina Sanitaria Panamericana, 21(10), 980–1000.
  25. Morozova, I., Kasianov, A., Bruskin, S., Neukamm, J., Molak, M., Batieva, E. et al. … & Schuenemann, V. J. (2020). New ancient Eastern European Yersinia pestis genomes illuminate the dispersal of plague in Europe. Philosophical Transactions of the Royal Society B, 375(1812), 20190569.
  26. Namouchi, A., Guellil, M., Kersten, O., Hänsch, S., Ottoni, C., Schmid, B.V. … & Bramanti, B. (2018). Integrative approach using Yersinia pestis genomes to revisit the historical landscape of plague during the medieval period. Proceedings of the National Academy of Sciences, 115(50), E11790–E11797.
  27. Panzac, D . (1985). La peste dans l'Empire Ottoman : 1700–1850. Leuven, Belgium: Peeters.
  28. Pollitzer, R . (1951). Plague studies I: A summary of the history and a survey of the present distribution of the disease. Bulletin of the World Health Organization, 4(4), 475.
    [Google Scholar]
  29. Pollitzer, R. (1954). Plague. Geneva, Switzerland: World Health Organization.
  30. Proust, A. (1897). La défense de l'Europe contre la peste et la Conférence de Venise de 1897. Paris, France: Masson. Retrieved from http://books.google.com/books?id=mmuFA-8TxpUC&oe=UTF-8
  31. Rascovan, N., Sjögren, K.-G., Kristiansen, K., Nielsen, R., Willerslev, E., Desnues, C., & Rasmussen, S. (2019). Emergence and spread of basal lineages of Yersinia pestis during the Neolithic decline. Cell, 176(1–2), 295305.
    [Google Scholar]
  32. Rasmussen, S., Allentoft, M., Nielsen, K., Orlando, L., Sikora, M., Sjögren, K.-G. et al. … & Willerslev, P. (2015). Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. Cell, 163(3), 571582.
    [Google Scholar]
  33. Schmid, B. V., Büntgen, U., Easterday, W. R., Ginzler, C., Walløe, L., Bramanti, B., & Stenseth, E. C. (2015). Climate-driven introduction of the Black Death and successive plague reintroductions into Europe. Proceedings of the National Academy of Sciences, 112(10). https://doi.org/ [Crossref]
  34. Scott, S., & Duncan, C. J. (2001). Biology of plagues: Evidence from historical populations. Cambridge, UK: Cambridge University Press.
  35. Seguin-Orlando, A., Costedoat, C., der Sarkissian, C., Tzortzis, S., Kamel, C., Telmon, N. et al. … & Orlando, L. (2021). No particular genomic features underpin the dramatic economic consequences of 17th century plague epidemics in Italy. Iscience, 24(4), 102383.
    [Google Scholar]
  36. Spyrou, M. A., Keller, M., Tukhbatova, R. I., Scheib, C. L., Nelson, E. A., Valtueña, A. A. et al. … & Krause, J. (2019). Phylogeography of the second plague pandemic revealed through analysis of historical Yersinia pestis genomes. Nature Communications, 10(1), 113.
    [Google Scholar]
  37. Spyrou, M. A., Tukhbatova, R. I., Feldman, M., Drath, J., Kacki, S., Beltrán de Heredia, J., … & Krause, J. (2016). Historical Y. pestis genomes reveal the European Black Death as the source of ancient and modern plague pandemics. Cell Host and Microbe, 19(6), 874881. https://doi.org/ [Crossref]
    [Google Scholar]
  38. Spyrou, M. A., Tukhbatova, R. I., Wang, C.-C., Valtueña, A. A., Lankapalli, A. K., Kondrashin, V. V. & Krause, J.(2018). Analysis of 3800-year-old Yersinia pestis genomes suggests Bronze Age origin for bubonic plague. Nature Communications, 9(1), 2234.
    [Google Scholar]
  39. Stenseth, N. C., Atshabar, B. B., Begon, M., Belmain, S. R., Bertherat, E., Carniel, E. et al. … & Rahalison, L. (2008). Plague: Past, present, and future. PLOS Medicine, 5(1), e3. https://doi.org/ [Crossref]
    [Google Scholar]
  40. Susat, J., Bonczarowska, J. H., Pētersone-Gordina, E., Immel, A., Nebel, A., Gerhards, G., & Krause-Kyora, B. (2020). Yersinia pestis strains from Latvia show depletion of the pla virulence gene at the end of the second plague pandemic. Scientific Reports, 10(1), 110.
    [Google Scholar]
  41. Susat, J., Lübke, H., Immel, A., Brinker, U., Macāne, A., Meadows, J. et al. … & Krause-Kyora, B. (2021). A 5,000-year-old hunter-gatherer already plagued by Yersinia pestis. Cell Reports, 35(13), 109278. https://doi.org/10.1016/j.celrep.2021.109278
    [Google Scholar]
  42. Twigg, G. (1984). The Black Death: A biological reappraisal. New York, NY: Schocken.
  43. Vallès, X., Stenseth, N. C., Demeure, C., Horby, P., Mead, P. S., Cabanillas, O. et al. … & Baril, L. (2020). Human plague: An old scourge that needs new answers. PLoS Neglected Tropical Diseases, 14(8), e0008251.
    [Google Scholar]
  44. Valtueña, A. A., Mittnik, A., Key, F. M., Haak, W., Allmäe, R., Belinskij, A. et al. … & Krause, J. (2017). The Stone Age plague and its persistence in Eurasia. Current Biology, 27(23), 36833691.e8. https://doi.org/ [Crossref]
    [Google Scholar]
  45. Wagner, D. M., Klunk, J., Harbeck, M., Devault, A., Waglechner, N., Sahl, J. W. et al. … & Poinar, H. (2014). Yersinia pestis and the plague of Justinian 541–543 AD: A genomic analysis. The Lancet Infectious Diseases, 14(4), 319326. https://doi.org/ [Crossref]
    [Google Scholar]
  46. World Health Organization . (1958). The first ten years of the World Health Organization. Geneva, Switzerland: World Health Organization.
  47. Xu, L., Stige, L. C., Leirs, H., Neerinckx, S., Gage, K. L., Yang, R. et al. … & Zhang, Z. (2019). Historical and genomic data reveal the influencing factors on global transmission velocity of plague during the Third Pandemic. Proceedings of the National Academy of Sciences, 116(24). https://doi.org/ [Crossref]
    [Google Scholar]
  48. Yersin, A. (1894). La peste bubonique à Hong-Kong. Annales de l'Institut Pasteur, 2, 428430.
    [Google Scholar]
/content/journals/10.1484/J.CNT.5.130126
Loading
/content/journals/10.1484/J.CNT.5.130126
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field.
Please enter a valid email address.
Approval was a Success
Invalid data
An error occurred.
Approval was partially successful, following selected items could not be processed due to error:
Please enter a valid_number test
aHR0cHM6Ly93d3cuYnJlcG9sc29ubGluZS5uZXQv