Skip to content
1882
Volume 64, Issue 2
  • ISSN: 0008-8994
  • E-ISSN: 1600-0498

Abstract

Abstract

Human beings can neither see nor feel magnetism, although its effects can be made manifest to sense experience through experiments. Since antiquity, philosophers have therefore often viewed magnetism as an “occult” force, for whose manifest effects a hidden cause had to be sought. Around 1300, scholars began to address the seemingly occult nature of magnetism not only through experimental investigation but also visually, attempting to represent experimental results in diagrams. Historical research on diagrams has been fairly negligent about the relation between diagrams and scientific practices, including experiments. This paper will try to redress the balance, by focusing on diagrams in manuscripts and printed texts between 1300 and 1700 that were produced in response to magnetic experiments. It will be argued that naturalistic and geometrizing forms of representation were combined in order to render experiments with magnetism understandable, replicable, and meaningful. This resulted in a visual style of diagram that oscillated between the abstract representation of invisible entities or powers and the concrete and performative depiction of actual objects or operations.

Open-access
Loading

Article metrics loading...

/content/journals/10.1484/J.CNT.5.131247
2022-08-01
2025-12-05

Metrics

Loading full text...

Full text loading...

/deliver/fulltext/cnt/64/2/J.CNT.5.131247.html?itemId=/content/journals/10.1484/J.CNT.5.131247&mimeType=html&fmt=ahah

References

  1. Albertus Magnus (Ps.). (1973). The book of secrets of Albertus Magnus of the virtues of herbs, stones and certain beasts, also a book of the marvels of the world (M. R. Best & F. Brightman, Eds.). Oxford, England: Clarendon Press.
  2. Albertus Magnus (Ps.). (2011). Il De mirabilibus mundi tra tradizione magica e filosofia naturale (A. Sannino, Ed.). Florence, Italy: SISMEL edizioni del Galluzzo.
  3. Baigrie, B. S. (1996). Descartes's scientific illustrations and “la grande mécanique de la nature.” In B. S. Baigrie (Ed.), Picturing knowledge: Historical and philosophical problems concerning the use of art in science (pp. 86–134). Toronto, Canada: University of Toronto Press.
  4. Balmer, H. (1956). Beiträge zur Geschichte der Erkenntnis des Erdmagnetismus. Aarau, Switzerland: H. R. Sauerländer.
  5. Bellis, D. (2010). Le visible et l'invisible dans la pensée cartésienne: Figuration, imagination et vision dans la philosophie naturelle de René Descartes (PhD dissertation). Universiteit Nijmegen, Nijmegen, The Netherlands; Université Paris-Sorbonne, Paris, France.
  6. Bénatouïl, T., & Draelants, I. (Eds.). (2011). Expertus sum: L'expérience par les sens dans la philosophie naturelle médiévale: Actes du colloque international de Pont-à-Mousson, 5–7 février 2009. Florence, Italy: SISMEL edizioni del Galluzzo.
  7. Bexte, P. (2007). Magnetische Diagramme: Gilberts Einübung ins indirekte Sehen. In G. Wimböck, K. Leonhard, M. Friedrich, & F. Büttner (Eds.), Evidentia: Reichweiten visueller Wahrnehmung in der Frühen Neuzeit (pp. 309–329). Berlin, Germany: LIT.
  8. Bianchi, M. L. (1982). Occulto e manifesto nella medicina del Rinascimento. Jean Fernel e Pietro Severino. Atti e Memorie dell'Accademia toscana di Scienze e Lettere La Colombaria, 47(33), 183234.
    [Google Scholar]
  9. Bigg, C. (2017). Diagrams. In B. V. Lightman (Ed.), A companion to the history of science (pp. 557–571). Malden, MA: Wiley-Blackwell.
  10. Borrelli, A. (2017). Optical diagrams as “paper tools”: Della Porta's analysis of biconvex lenses from De refractione to De telescopio. In A. Borrelli, G. Hon, & Y. Zik (Eds.), The optics of Giambattista Della Porta (ca. 1535–1615): A reassessment (pp. 57–96). Cham, Switzerland: Springer.
  11. Cabeo, N. (1629). Philosophia magnetica. Ferrara, Italy: Apud Franciscum Succium.
  12. Catton, P., & Montelle, C. (2012). To diagram, to demonstrate: To do, to see, and to judge in Greek geometry. Philosophia Mathematica, 20(1), 2557. https://doi.org/ [Crossref]
    [Google Scholar]
  13. Clarke, D. M. (1989). Occult powers and hypotheses: Cartesian natural philosophy under Louis XIV. Oxford, England: Clarendon Press.
  14. Cohen, A. S. (2020). Diagramming the diagrammatic: Twelfth-century Europe. In M. A. Kupfer, J. H. Chajes, & A. S. Cohen (Eds.), The visualization of knowledge in medieval and early modern Europe (pp. 383–404). Turnholt, Belgium: Brepols.
  15. Copenhaver, B. P. (1991). A tale of two fishes: Magical objects in natural history from antiquity through the Scientific Revolution. Journal of the History of Ideas, 52(3), 373398. https://doi.org/ [Crossref]
    [Google Scholar]
  16. Crowther, K. M., & Barker, P. (2013). Training the intelligent eye: Understanding illustrations in early modern astronomy texts. Isis, 104(3), 429470. https://doi.org/ [Crossref]
    [Google Scholar]
  17. Cunningham, R. (2001). Virtual witnessing and the role of the reader in a new natural philosophy. Philosophy and Rhetoric, 34(3), 207224.
    [Google Scholar]
  18. Daston, L. (2015). Epistemic images. In A. A. Payne (Ed.), Vision and its instruments: Art, science, and technology in early modern Europe (pp. 13–35). University Park, PA: Penn State Press.
  19. Daujat, J. (1945). Origines et formation de la théorie des phénomènes électriques et magnétiques. Paris, France: Hermann & Co.
  20. Dear, P. R. (2006). The meanings of experience. In K. Park & L. Daston (Eds.), Early modern science (pp. 106–131). Cambridge, England: Cambridge University Press.
  21. Descartes, R. (1644). Principia philosophiae. Amsterdam, The Netherlands: Apud Ludovicum Elzevirium.
  22. Descartes, R. (1964–1974). Oeuvres de Descartes (C. Adam & P. Tannery, Eds.; Vols. 1–11). Paris, France: Vrin.
  23. Downes, S. M. (2012). How much work do scientific images do? In A. Gross & E. Louson (Eds.), Visual representation and science (pp. 115–130). Toronto, Canada: University of Toronto. Retrieved from https://spontaneousgenerations.library.utoronto.ca/index.php/SpontaneousGenerations/issue/view/1386
  24. Dupré, S. (2006). Visualization in Renaissance optics: The function of geometrical diagrams and pictures in the transmission of practical knowledge. In S. Kusukawa & I. Maclean (Eds.), Transmitting knowledge: Words, images, and instruments in early modern Europe (pp. 11–39). Oxford, England: Oxford University Press.
  25. Eastwood, B. S. (1989). Astronomy and optics from Pliny to Descartes: Texts, diagrams and conceptual structures. London, England: Varorium Reprints.
  26. Fleming, J. D. (2011). The undiscoverable country: Occult qualities, scholasticism, and the end of nescience. In J. D. Fleming (Ed.), The invention of discovery, 1500–1700 (pp. 61–78). Burlington, VT: Ashgate.
  27. Foley, L. E., Gegear, R. J., & Reppert, S. M. (2011). Human cryptochrome exhibits light-dependent magnetosensitivity. Nature Communications, 2, 356. https://doi.org/ [Crossref]
    [Google Scholar]
  28. Franklin, J. (2000). Diagrammatic reasoning and modelling in the imagination: The secret weapons of the Scientific Revolution. In G. Freeland & A. Corones (Eds.), 1543 and all that: Image and word, change and continuity in the proto-scientific revolution (pp. 53–115). Dordrecht, The Netherlands: Kluwer Academic Publishers.
  29. Fransen, S., & Reinhart, K. M. (2019). The practice of copying in making knowledge in early modern Europe: An introduction. Word et Image, 35(3), 211222.
    [Google Scholar]
  30. Frede, M. (1987). Essays in ancient philosophy. Minneapolis, MN: University of Minnesota Press.
  31. Freudenthal, G. (1983). Theory of matter and cosmology in William Gilbert's De magnete. Isis, 74(1), 2237.
    [Google Scholar]
  32. Frosini, F. (2013). “Come calamita il ferro”: Leonardo da Vinci dalla magia alla prospettiva (1487–1492). In F. Fiorani & A. Nova (Eds.), Leonardo da Vinci and optics: Theory and pictorial practice (pp. 113–153). Venice, Italy: Marsilio.
  33. Gabbey, A. (2001). Mechanical philosophies and their explanations. In C. Lüthy, J. E. Murdoch, & W. R. Newman (Eds.), Late medieval and early modern corpuscular matter theories (pp. 441–556). Leiden, The Netherlands: Brill.
  34. Garzoni, L. (2005). Trattati della calamita (M. Ugaglia, Ed.). Milan, Italy: FrancoAngeli.
  35. Geek3. (2010, June). File:VFPt cylindrical magnet thumb.svg. Wikimedia Commons. Retrieved from https://commons.wikimedia.org/w/index.php?curid=10587119
  36. Georgescu, L. (2013). One experiment, different uses: Floating magnetic bodies in Peregrinus, Norman and Gilbert. Journal of Early Modern Studies, 2(1), 81103.
    [Google Scholar]
  37. Georgescu, L. (2014). The diagrammatic dimension of William Gilbert's De magnete. Studies in History and Philosophy of Science, 47, 1825.
    [Google Scholar]
  38. Georgescu, L. (2017). Devising magnetism: Concepts and investigative practices (PhD dissertation). Ghent University, Ghent, Belgium. Retrieved from http://hdl.handle.net/1854/LU-8526816
  39. Gertsman, E. (2021). Abstraction in medieval art: Beyond the ornament. Amsterdam, The Netherlands: Amsterdam University Press.
  40. Gesner, C. (1565). De Rerum fossilium, lapidum et gemmarum maxime, figuris et similitudinibus liber. Zurich, Switzerland: Apud Gesnerum.
  41. Giere, R. N. (1999). Using models to represent reality. In L. Magnani, N. J. Nersessian, & P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 41–57). New York, NY: Kluwer Academic Plenum Publishers.
  42. Giere, R. N. (2004). How models are used to represent reality. Philosophy of Science, 71(5), 742752. https://doi.org/ [Crossref]
    [Google Scholar]
  43. Gilbert, W. (1600). De magnete, magneticisque corporibus, et de magno magnete tellure; physiologia noua, plurimis & argumentis, & experimentis demonstrata. London, England: excudebat Short.
  44. Gilbert, W. (1900). On the magnet, magnetick bodies also, and on the great magnet of the earth; a new physiology, demonstrated by many arguments & experiments (S. P. Thompson, Ed. & Trans.). London, England: Chiswick Press.
  45. Gooding, D. (1980). Faraday, Thomson, and the concept of the magnetic field. The British Journal for the History of Science, 13(2), 91120.
    [Google Scholar]
  46. Goodwin, W. (2012). Visual representations of structure and the dynamics of scientific modeling. In A. Gross & E. Louson (Eds.), Visual representation and science (pp. 131–141). Toronto, Canada: University of Toronto. Retrieved from https://spontaneousgenerations.library.utoronto.ca/index.php/SpontaneousGenerations/issue/view/1386
  47. Gormans, A. (2000). Imagination des Unsichtbaren. Zur Gattungstheorie des wissenschaftlichen Diagramms. In H. Holländer (Ed.), Erkenntnis, Erfindung, Konstruktion: Studien zur Bildgeschichte von Naturwissenschaften und Technik vom 16. bis zum 19. Jahrhundert (pp. 51–71). Berlin, Germany: Mann.
  48. Grandami, J. (1645). Nova demonstratio immobilitatis terrae petita ex virtute magnetica et quædam alia ad effectus & leges magneticas, usumque longitudinum & universam geographiam spectantia, de novo inventa. La Flèche, France: G. Griveau.
  49. Hackmann, W. D. (1993). Natural philosophy textbook illustrations 1600–1800. In R. G. Mazzolini (Ed.), Non-verbal communication in science prior to 1900 (pp. 169–196). Florence, Italy: Olschki.
  50. Halleux, R. (2007). Entre philosophie naturelle et savoir d'ingénieur: L'epistola de magnete de Pierre de Maricourt. Archives Internationales d'Histoire des Sciences, 56(156–157), 317.
    [Google Scholar]
  51. Harradon, H. D. (1943). Some early contributions to the history of geomagnetism: IV. Terrestrial Magnetism and Atmospheric Electricity, 48(3), 127130.
    [Google Scholar]
  52. Hautefeuille, J. de, & Aubry, J. P. (1690). Magnetologia curiosa: Das ist, Gründtliche Abhandlung des Magneths: In zwey Abtheilungen enthalten. Mainz, Germany: Christoph Küchlern.
  53. Hellmann, G. (Ed.). (1898). Rara magnetica 1269–1599. Berlin, Germany: A. Asher & Co.
  54. Henry, J. (2001). Animism and empiricism: Copernican physics and the origins of William Gilbert's experimental method. Journal of the History of Ideas, 62(1), 99119. https://doi.org/ [Crossref]
    [Google Scholar]
  55. Hutchison, K. (1982). What happened to occult qualities in the scientific revolution? Isis, 73(2), 233253.
    [Google Scholar]
  56. Huygens, C. (1937). Mécanique théorique et physique de 1666 à 1695: Huygens à l'Académie Royale des Sciences (J. A. Vollgraff, Ed.). La Haye, The Netherlands: Nijhoff.
  57. Ierodiakonou, K. (2002). Aristotle's use of examples in the prior analytics. Phronesis, 47(2), 127152.
    [Google Scholar]
  58. Jalobeanu, D. (2016). “Borders,” “leaps” and “orbs of virtue”: A contextual reconstruction of Francis Bacon's extension-related concepts. In K. Vermeir & J. Regier (Eds.), Boundaries, extents and circulations (pp. 229–254). Dordrecht, The Netherlands: Springer. https://doi.org/ [Crossref]
  59. Keteltas, B. E. (1609). Het ghebrvyck der naeld-vviisinge tot dienste der zee-vaert beschreven. Amsterdam, The Netherlands: Barent Otsz.
  60. King, W. J. (1959). The natural philosophy of William Gilbert and his predecessors. Contributions from the Museum of History and Technology Series Bulletin, 218, 121139.
    [Google Scholar]
  61. Kircher, A. (1641). Magnes; sive, De arte magnetica opus tripartitum. Rome, Italy: Ex typographia Ludovici Grignani, sumptibus Hermanni Scheus.
  62. Kleinert, A. (2003). Wie funktionierte das Perpetuum mobile des Petrus Peregrinus? NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin, 11(3), 155170. https://doi.org/ [Crossref]
    [Google Scholar]
  63. Krafft, F. (1970). Sphaera activitatis—orbis virtutis. Das Entstehen der Vorstellung von Zentralkräften. Sudhoffs Archiv, 54, 113140.
    [Google Scholar]
  64. Kupfer, M. A., Chajes, J. H., & Cohen, A. S. (Eds.). (2020). The visualization of knowledge in medieval and early modern Europe. Turnholt, Belgium: Brepols.
  65. Lattmann, C. (2019). Mathematische Modellierung bei Platon zwischen Thales und Euklid. Berlin, Germany: De Gruyter.
  66. Leonardi, C., & Arlensis de Scudalupis, P. (1610). Speculum lapidum Camilli Leonardi. Cui Accessit Sympathia septem metallorum ac septem selectorum lapidum ad planetas. D. Petri Arlensis de Scudalupis. Paris, France: Apud Carolum Sevestre, Davidem Gillium et Joannem Petitpas.
  67. Lüthy, C. (2006). Where logical necessity turns into visual persuasion: Descartes' clear and distinct illustrations. In S. Kusukawa & I. Maclean (Eds.), Transmitting knowledge: Words, images, and instruments in early modern Europe (pp. 97–133). Oxford, England: Oxford University Press.
  68. Lüthy, C. (2018). What does a diagram prove that other images do not? Images and imagination in the Kepler-Fludd controversy. In C. Lüthy, C. Swan, P. J. J. M. Bakker, & C. Zittel (Eds.), Image, imagination, and cognition: Medieval and early modern theory and practice (pp. 227–274). Leiden, The Netherlands: Brill.
  69. Magnetic attraction and repulsion. (n.d.). Encyclopædia Britannica. Retrieved from https://www.britannica.com/science/magnetism/images-videos#/media/1/357334/145755
  70. Maignan, E. (1653). Pars secunda philosophiae naturae. Toulouse, France: Bosc.
  71. Marr, A. (2016). Knowing images. Renaissance Quarterly, 69(3), 10001013.
    [Google Scholar]
  72. Martin, C. (2017). Elements and qualities. In T. F. Glick, S. J. Livesey, & F. Wallis (Eds.), Medieval science, technology and medicine: An encyclopedia (pp. 157–159). London, England: Routledge.
  73. Mendell, H. (1998). Making sense of Aristotelian demonstration. Oxford Studies in Ancient Philosophy, 16, 160225.
    [Google Scholar]
  74. Mersenne, M. (1932–1988). Correspondance du P. Marin Mersenne, religieux minime (P. Tannery & C. de Waard, Eds.; Vols. 1–17). Paris, France: G. Beauchesne.
  75. Müller, K. (2011). Gott ist (k)eine Sphäre. Visualisierungen des Göttlichen in geometrisch-abstrakten Diagrammen des Mittelalters. In R. Hoeps (Ed.), Handbuch der Bildtheologie: Zwischen Zeichen und Präsenz (Vol. 3, pp. 311–355). Paderborn, Germany: F. Schöningh.
  76. Netz, R. (1999). The shaping of deduction in Greek mathematics: A study in cognitive history. Cambridge, England: Cambridge University Press.
  77. Nießner, C., Denzau, S., Stapput, K., Ahmad, M., Peichl, L., Wiltschko, W., & Wiltschko, R. (2013). Magnetoreception: Activated cryptochrome 1a concurs with magnetic orientation in birds. Interface: Journal of the Royal Society, 10(88). https://doi.org/ [Crossref]
    [Google Scholar]
  78. Norman, R. (1581). The new attractive: Containing a short discourse of the magnes or lodestone. London, England: Ballard.
  79. North, J. D. (2004). Diagram and thought in medieval science. In M.-T. Zenner (Ed.), Villard's legacy: Studies in medieval technology, science and art in memory of Jean Gimpel (pp. 265–287). Burlington, VT: Ashgate.
  80. Pasnau, R. (2011). Scholastic qualities, primary and secondary. In L. Nolan (Ed.), Primary and secondary qualities: The historical and ongoing debate (pp. 41–61). New York, NY: Oxford University Press.
  81. Petrus Peregrinus. (1558). De magnete, seu rota perpetui motus, libellus (A. P. Gasser, Ed.). Augsburg, Germany: Philipp Ulhart d.Ä.
  82. Petrus Peregrinus. (1995). Opera (L. Sturlese & R. B. Thomson, Eds.). Pisa, Italy: Scuola normale superiore.
  83. Porta, G. della. (1589). Magiae naturalis libri XX. Naples, Italy: Salvian.
  84. Pumfrey, S. (1990). Neo-Aristotelianism and the magnetic philosophy. In J. Henry & S. Hutton (Eds.), New perspectives on Renaissance thought: Essays in the history of science, education and philosophy, in memory of Charles B. Schmitt (pp. 177–189). London, England: Duckworth.
  85. Raimundus Lullus. (1520). De virtute magnetis. Rome, Italy: Marcello Silber.
  86. Raphael, R. (2013). Teaching through diagrams: Galileo's Dialogo and Discorsi and his Pisan readers. Early Science and Medicine, 18(1–2), 201230.
    [Google Scholar]
  87. Regius, H. (1646). Fundamenta physices. Amsterdam, The Netherlands: Apud Ludovicum Elzevirium.
  88. Saito, K. (2012). Traditions of the diagram, tradition of the text: A case study. Synthese, 186(1), 720. https://doi.org/ [Crossref]
    [Google Scholar]
  89. Sander, C. (2016). Early-modern magnetism: Uncovering new textual links between Leonardo Garzoni SJ (1543–1592), Paolo Sarpi OSM (1552–1623), Giambattista Della Porta (1535–1615), and the Accademia dei Lincei. Archivum Historicum Societatis Iesu, 85(2), 303363.
    [Google Scholar]
  90. Sander, C. (2020a). Magnes: Der Magnetstein und der Magnetismus in den Wissenschaften der Frühen Neuzeit. Leiden, The Netherlands: Brill. https://doi.org/ [Crossref]
  91. Sander, C. (2020b). Magnetism for librarians. Leone Allacci's De magnete (1625) and its relation to Giulio Cesare LaGalla's Disputatio de sympathia et antipathia (1623). Erudition and the Republic of Letters, 5(3), 274307. https://doi.org/ [Crossref]
    [Google Scholar]
  92. Sander, C. (2021a). Images in Petrus Peregrinus' Epistola de magnete (1269–1650). Rara Magnetica. Retrieved from https://doi.org// [Crossref]
  93. Sander, C. (2021b). Nutrition and magnetism. An ancient idea fleshed out in early modern natural philosophy, medicine and alchemy. In R. Lo Presti & G. Korobili (Eds.), Nutrition and nutritive soul in Aristotle and Aristotelianism (pp. 285–318). Berlin, Germany: De Gruyter. https://doi.org/ [Crossref]
  94. Sander, C. (in press-a). Magnetism in an Aristotelian world (1550–1700). In B. Roling, S. Kılıç, & B. Wallura (Eds.), Aristoteles und die Naturphilosophie an den mitteleuropäischen Universitäten der Frühen Neuzeit, 1600–1700. Wiesbaden, Germany: Harrassowitz Verlag.
  95. Sander, C. (in press-b). Teaching magnetism in a Cartesian world (1650–1700). In D. Cellamare & M. Mantovani (Eds.), Descartes in the classroom. Leiden, The Netherlands: Brill.
  96. Sander, C. (in press-c). Tempering occult qualities. Magnetism and complexio in early modern medical thought. Early Science and Medicine.
    [Google Scholar]
  97. Sander, C. (in press-d). Terra AB: Descartes's imagery on magnetism and its legacy. In D. Cellamare & M. Mantovani (Eds.), Cartesian images: Picturing natural philosophy in the early modern age. Leiden, The Netherlands: Brill.
  98. Sarpi, P. (1996). Pensieri naturali, metafisici e matematici (L. Cozzi & L. Sosio, Eds.). Milan, Italy: R. Ricciardi.
  99. Smets, A., & Lüthy, C. (2009). Words, lines, diagrams, images: Towards a history of scientific imagery. Early Science and Medicine, 14(1–3), 398439.
    [Google Scholar]
  100. Smith, J. A. (1992). Precursors to Peregrinus: The early history of magnetism and the mariner's compass in Europe. Journal of Medieval History, 18(1), 2174.
    [Google Scholar]
  101. Sonar, T. (2016). … in the darkest night that is …: Briggs, Blundeville, Wright, and the misconception of finding latitude. Journal of the British Society for the History of Mathematics, 32(1), 2029. https://doi.org/ [Crossref]
    [Google Scholar]
  102. Steinle, F. (2008). How experiments make concepts fail: Faraday and magnetic curves. In G. Hon, J. Schickore, & F. Steinle (Eds.), Going amiss in experimental research (pp. 119–135). Dordrecht, The Netherlands: Springer.
  103. Steinle, F. (2012). Goals and fates of concepts: The case of magnetic poles. In U. Feest & F. Steinle (Eds.), Scientific concepts and investigative practice (pp. 105–126). Berlin, Germany: De Gruyter.
  104. Strayer, J. (2014). Subjects and objects: Art, essentialism, and abstraction. Leiden, The Netherlands: Brill.
  105. Strazzoni, A. (2015). The didactic, persuasive and scientific uses of illustrations after Descartes. Noctua: La Tradizione Filosofica Dall'antico al Moderno, 1, 432480. https://doi.org/ [Crossref]
    [Google Scholar]
  106. Taisnier, J. (1562). Opusculum perpetua memoria dignissimum: de natura magnetis, et eius effectibus. Cologne, Germany: Apud Ioannum Birckmannum.
  107. Taisnier, J. (1575). A very necessarie and profitable booke concerning nauigation, compiled in Latin by Ioannes Taisnierus (R. Eden, Trans.). London, England: Richard Iugge.
  108. Ugaglia, M. (2005). Introduzione. In M. Ugaglia (Ed.), Trattati della calamita (pp. 7–83). Milan, Italy: FrancoAngeli.
  109. Ugaglia, M. (2006). The science of magnetism before Gilbert: Leonardo Garzoni's treatise on the loadstone. Annals of Science, 63(1), 5984. https://doi.org/ [Crossref]
    [Google Scholar]
  110. Waddell, M. A. (2015). Jesuit science and the end of nature's secrets. Farnham, England: Ashgate.
  111. Wang, X. (2016). Francis Bacon and magnetical cosmology. Isis, 107(4), 707721.
    [Google Scholar]
  112. Wardy, R. (2007). The chain of change: A study of Aristotle's Physics VII. Cambridge, England: Cambridge University Press.
  113. Weill-Parot, N. (2010). Astrology, astral influences, and occult properties in the thirteenth and fourteenth centuries. Traditio, 65(1), 201230.
    [Google Scholar]
  114. Weill-Parot, N. (2013). Points aveugles de la nature: La rationalité scientifique médiévale face à l'occulte, l'attraction magnétique et l'horreur du vide (XIIIe-milieu du XVe siècle). Paris, France: Les Belles Lettres.
  115. Wild, I. (1906). Zur Geschichte der Qualitates Occultae. Jahrbuch für Philosophie und spekulative Theologie, 20, 307–345.
  116. Wilson, C. (1988). Visual surface and visual symbol: The microscope and the occult in early modern science. Journal of the History of Ideas, 49(1), 85108. https://doi.org/ [Crossref]
    [Google Scholar]
  117. Wiltschko, R., & Wiltschko, W. (1995). Magnetic orientation in animals. Berlin, Germany: Springer.
  118. Yoder, J. G. (2013). Catalogue of the manuscripts of Christiaan Huygens, including a concordance with his oeuvres complètes. Leiden, The Netherlands: Brill. https://doi.org/ [Crossref]
  119. Yong, E. (2010, August 7). Robins can literally see magnetic fields, but only if their vision is sharp. National Geographic. Retrieved from https://www.nationalgeographic.com/science/article/robins-can-literally-see-magnetic-fields-but-only-if-their-vision-is-sharp
  120. Zittel, C. (2007). Theatrum philosophicum: Erfahrungsmodi und Formen der Wissensrepräsentation bei Descartes. Berlin, Germany: Akademie Verlag.
/content/journals/10.1484/J.CNT.5.131247
Loading
/content/journals/10.1484/J.CNT.5.131247
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field.
Please enter a valid email address.
Approval was a Success
Invalid data
An error occurred.
Approval was partially successful, following selected items could not be processed due to error:
Please enter a valid_number test
aHR0cHM6Ly93d3cuYnJlcG9sc29ubGluZS5uZXQv